Effect of high hydrostatic pressure on the dielectric relaxation in a non-crystallizable monohydroxy alcohol in its supercooled liquid and glassy states.
نویسندگان
چکیده
The complex relative permittivity of a non-crystallizable secondary alcohol, 5-methyl-2-hexanol, is measured over a wide range of temperatures and pressures up to 1750 MPa (17.5 kbar). The data at atmospheric pressure (P = 0.101 MPa) are analyzed in terms of three processes, and the results are in complete agreement with that of O. E. Kalinovskaya and J. K. Vij [J. Chem. Phys. 112, 3262 (2000)]. Process I is of the Debye type and process II is of the Davidson-Cole type, whereas process III is identified as the Johari-Goldstein relaxation process. For pressures of ∼500 MPa and higher, processes I and II are seen to merge into each other to form a single dominant process which unambiguously cannot be resolved into more than one process. The dielectric relaxation strength of process I decreases slightly initially with pressure and when the two processes have merged at elevated pressures, the total relaxation strength increases with increase in pressure. Process III is better resolvable at higher pressures especially above T(g) in the supercooled liquid state for the reason that the separation in the time scales between the dominant and the JG relaxation process increases at elevated pressures. Surprisingly we find a change in the slope in the plot of log τ(JG) vs. 1/T for P = 1750 MPa. The results for the relaxation time of alcohols are compared with the Kirkwood correlation factor, g, and it is found that higher is the g, lower is the relaxation time for process I, and it is more of the Debye type. On a reduction in g brought about by an increase in pressure at lower temperatures, the dominant process becomes non-Debye though extensive hydrogen bonding is still present. The dielectric strength of the merged processes increases with increase in pressure. The values of the steepness index, m = |d log τ/d(T(g)/T)|(T = Tg) for processes I and II are different for P = 0.1 MPa. However the value of m, for the composite process, which is a merger of processes I and II, for P = 1750 MPa is almost the same for process II at P = 0.1 MPa. From the results of the activation volume, activation enthalpy, and a comparison of the relaxation times with the g factor, we conclude that both processes I and II are significantly affected by hydrogen bonding and both contribute to the structural relaxation.
منابع مشابه
Anomalous electrical conductivity behavior at elevated pressure in the protic ionic liquid procainamide hydrochloride.
Using broadband dielectric spectroscopy, we investigated the effect of hydrostatic pressure on the conductivity relaxation time τ{σ} of the supercooled protic ionic liquid, procainamide hydrochloride, a common pharmaceutical. The pressure dependence of τ{σ} exhibited anomalous behavior in the vicinity of the glass transition T{g}, manifested by abrupt changes in activation volume. This peculiar...
متن کاملRelaxational dynamics in the glassy, supercooled liquid, and orientationally disordered crystal phases of a polymorphic molecular material
The relaxational dynamics of the ambient pressure phases of ethyl alcohol are studied by means of measurements of frequency dependent dielectric susceptibility. A comparison of the a relaxation in the supercooled liquid and in the rotator phase crystal indicates that the molecular rotational degrees of freedom are the dominant contribution to structural relaxation at temperatures near the glass...
متن کاملEffects of hydrostatic pressure and temperature on the AlGaN/GaN High electron mobility transistors
In this paper, drain-source current, transconductance and cutoff frequency in AlGaN/GaN high electron mobility transistors have been investigated. In order to obtain parameters of exact AlGaN/GaN high electron mobility transistors such as electron density, the wave function, band gap, polarization charge, effective mass and dielectric constant, the hydrostatic pressure and temperature effects a...
متن کاملTest of the Einstein-Debye relation in supercooled dibutylphthalate at pressures up to 1.4 GPa.
Broadband dielectric measurements were carried out on di-n-butyl phthalate (DBP) under isothermal conditions at hydrostatic pressures up to 1.6 GPa. A comparison of the dielectric relaxation times with the viscosity revealed that no breakdown of the Einstein-Debye relation is induced by high compression. This absence of any decoupling is attributed to the weak intermolecular cooperativity of DB...
متن کاملSupercooled-liquid and plastic-crystalline state in succinonitrile-glutaronitrile mixtures.
We report a thorough characterization of the glassy phases of mixtures of succinonitrile and glutaronitrile via dielectric spectroscopy and differential scanning calorimetry. This system is revealed to be one of the rare examples where both glassy states of matter, a structurally disordered supercooled liquid and an orientationally disordered plastic crystal, can be prepared in the same materia...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 8 شماره
صفحات -
تاریخ انتشار 2011